On a continued fraction formula of Wall
نویسندگان
چکیده
We study the combinatorics of a continued fraction formula due to Wall. We also derive the orthogonality of little q-Jacobi polynomials from this formula, as Wall did for little q-Laguerre polynomials.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملWall rational functions and Khrushchev’s formula for orthogonal rational functions
We prove that the Nevalinna-Pick algorithm provides different homeomorphisms between certain topological spaces of measures, analytic functions and sequences of complex numbers. This algorithm also yields a continued fraction expansion of every Schur function, whose approximants are identified. The approximants are quotients of rational functions which can be understood as the rational analogs ...
متن کاملON RAMANUJAN ’ S CONTINUED FRACTION FOR ( q 2 ; q 3 ) ∞ / ( q ; q 3 ) ∞
The continued fraction in the title is perhaps the deepest of Ramanujan’s q-continued fractions. We give a new proof of this continued fraction, more elementary and shorter than the only known proof by Andrews, Berndt, Jacobsen, and Lamphere. On page 45 in his lost notebook, Ramanujan states an asymptotic formula for a continued fraction generalizing that in the title. The second main goal of t...
متن کاملOn the Generalized Rogers–ramanujan Continued Fraction
On page 26 in his lost notebook, Ramanujan states an asymptotic formula for the generalized Rogers–Ramanujan continued fraction. This formula is proved and made slightly more precise. A second primary goal is to prove another continued fraction representation for the Rogers–Ramanujan continued fraction conjectured by R. Blecksmith and J. Brillhart. Two further entries in the lost notebook are e...
متن کاملExplicit formula for the inverse of a tridiagonal matrix by backward continued fractions
In this paper, we consider a general tridiagonal matrix and give the explicit formula for the elements of its inverse. For this purpose, considering usual continued fraction, we define backward continued fraction for a real number and give some basic results on backward continued fraction. We give the relationships between the usual and backward continued fractions. Then we reobtain the LU fact...
متن کامل